Inspecting an AC Motor

I got another single phase AC motor for free.  This one is an older GE single phase dual voltage 1hp motor.  The cradle mount is missing and I’ll have to deal with that later.  Currently, I’d like to check it out to see if it will run.  Here’s a picture of the motor.  It was missing the cover over where the wires connect and I made a new one from some scrap.

Sure, I could just hook the motor up and flip the switch but that’s not the best approach.  You could damage the motor or shock yourself if something is wrong.  Both are not desirable. There are a few checks that can be done first before trying to run the motor.

The first is a simple mechanical test.  Does the motor spin freely?  On a single phase motor, you will hear a slight rubbing from the centrifugal switch but other than that the armature should spin easily.  Are there any nuts or bolts missing from the front or back.  Usually the ends of the motor are held on with long bolts that go from one end of the motor to the other.  There should be a nut on the end of each bolt.  Sometimes the end bells are directly bolted to the middle of the motor.  Either way, make sure the end bells are attached to the rest of the motor.

After the brief mechanical inspection is done, it’s time to move on to an electrical inspection with a multimeter.  Most of this can be done without disassembling the motor but I’m going to for clarity.  Disassembling this motor is pretty simple.  First, the nuts are removed from the long bolts to allow the bolts to be removed.  Next, the end bells are removed by tapping them off with a hammer.  This motor has little pockets on the end bells where a screwdriver can be placed to tap the end bells off.  You’ll want to mark the orientation of the end bells to the body of the motor before removal.

Sometimes with an open motor you’ll want to take apart the motor just to clean it out.  Dirt and other gunk can get sucked into the motor which can cause overheating.  Keep an eye out for any shims that may be in the motor.  You’ll want to put the mall back in in the same orientation as they came out.

In theory an induction motor is a pretty simple device.  There are loops of wire called windings that AC voltage passes through that are fixed to the body of the motor known as the stator.  In the middle are more loops of wire on the rotor which turns.  The AC voltage in the stator creates a rotating magnetic field that interacts with the rotor causing it to spin.  A single phase motor won’t start on its own.  One way to start one is to add some more windings (start windings) on the stator in series with a capacitor.  The capacitor shifts the phase of the current in these start windings which helps start the rotor turning.  The start windings and start capacitor will burn up if left running though.  To remove them from the circuit, a centrifugal switch is used which switches when the motor comes up to speed.  Sometimes single phase motors have a second capacitor called a run capacitor.  It’s not the same as a start capacitor and does keep working when the motor is running.

On my motor there is also an over overload device that will shut the motor down if it overheads or draws too much current.  It is a normally closed switch which opens if a small piece of metal becomes too hot.

This motor is currently set up for 115V though it can be setup to run on 230V.   The voltage is selected by moving some small metal links which change the way the windings are connected.  For 115V the windings are wired in parallel and for 230V the windings are wired in series.   Here’s a little drawing of the wiring in the motor.  The ovals with two dots represent the metal links for this motor.  With the diagram, you can see multiple things can be tested such as continuity through both windings and the start winding, operation of the centrifugal switch, continuity through the overload devices, and the capacitor.  Note that any  resistance values are specific to my motor and probably don’t apply to others.Here’s a view of the end of the stator with all the interesting bits.  The black circular object is the overload device.  The wishbone looking thing is the electrical part of the centrifugal switch.  Finally, there’s all the wires, metal links, and posts for the motor line connections.

The first electrical test, is to check for continuity through the windings.  This is done by checking the resistance with the meter hooked up to the two line connection posts.  With the windings wired in parallel there’s a possibility that one of the windings is burned out.  To check, the metal links would need to be switched to the 230V setting and continuity checked again.  Alternatively, if you have a diagram of the motor, each winding can be checked separately.  I look for a low, but not zero, resistance value.  An open would indicate a failed winding or bad connection.

Next, is to check for continuity between the windings and the motor casing.  This is done by checking continuity between one line connection post and the casing.  You’ll need to find bare metal on the casing such as a screw hole or screw threads to connect to the motor casing.  For this test, I expect an open result otherwise the winding is contacting the motor casing which should trip a breaker or shock you.

The electrical part of the centrifugal switch is a simple switch.  When the motor is stopped the switch should be closed and opens when the motor is up to speed.  On my motor, without the mechanical part of the centrifugal switch in place the electrical switch is open.  I can close it by gently pushing on the wishbone.  If it doesn’t respond as expected check for loose wires or dirty contacts. The mechanical part of the centrifugal switch consists of some spring loaded weights that fly out when up to speed pulling the plastic piece down on my motor.  It should be checked to make sure it opens freely though not effortlessly by pushing down on the plastic piece.

On a capacitor start motor, the capacitor is usually on the outside of the motor under a metal cover.  Before you start messing with the capacitor be sure it is drained by putting a good sized resistor across it or connecting the two posts with a piece of metal that you’re insulated from such as a screwdriver.    Ideally, you’d check the capacitor with a capacitance checker but not everyone has one of those.  If you don’t there are a few makeshift tests you can do.  After the capacitor has been drained, disconnect and remove it.  A multimeter can be used to measure the resistance of the capacitor.  You shouldn’t get a low or open reading.  On mine I got around 14 megaohms.  Another way to test is to drain the capacitor and check the voltage.  It should read zero.  Then hook a 9V battery up to the capacitor for around 10 seconds.  Remove the battery and check the voltage across the capacitor.  You should see that the voltage is no longer zero and somewhere near 9V.  Mine was around 7V and slowly decreasing.  If you short the capacitor you should see a weak spark.  The results indicate the capacitor should probably work.  These kinds of tests are about all you can do without a capacitance tester and none check the capacitor at the kind of voltage it will operate at.

The overload device on my motor can also be checked for continuity.  It has three posts and should show continuity between all three sets of two wires.  If it does, it will let the motor run.  I suppose it could fail open or closed but there is no way I can think of to check the operation of it without specialized equipment.

I did some of the tests before opening up my motor and thought it should run.  I plugged it in and it ran.  It operated as expected but the bearings were noisy.  I ordered some replacement bearings and pulled the old ones.

The new bearings were pressed on with my arbor press. After that I did some more of the tests covered above before putting the motor back together. 

If you have a single phase capacitor start motor that won’t start but had previously been running well, there’s another simple test you can do.  Remove the load from it and turn it on.  If it still doesn’t start, quickly turn it off.  Find a piece of string and wrap it around the motor shaft.  Quickly pull the string off to get the motor shaft spinning and turn the motor on again.  If it starts up it’s probably the capacitor as the centrifugal switch isn’t likely to work fine one day and fail the next.  Obviously, don’t wrap the string around yourself or try to start the motor before the string is free of the shaft.

There are other tests that can be done on motors but hopefully these simple ones will help you get your motor running.



Posted in Repair, Restoration, Tools | 1 Comment

Hardinge HLV Part 2: Apron

I’m working on multiple parts of the lathe at once.  I do this because I’m usually waiting on parts or tools to arrive.  I’m going to post about sub assemblies though.  This time I’m going to cover the apron and carriage.  Once again, for whatever reason, the flash on my camera shows rust that doesn’t show up in person.  So, it is not as bad as it looks.

I removed all the parts (clutch towers, hand wheel, and half nut lever) hanging off of the apron before removing it from the lathe.  Seen  below is the apron (on the left) and carriage (on the right).  There are some spring assemblies which pull the longitudinal and cross slide clutches closed.  They don’t have to be removed to split the apron as they hold some of the parts in place.   I removed them though because I was unaware of this at the time.

Removing five bolts allows the apron to be split but not easily as there are some pins that are a tight fit.  Once I got the apron apart I could fully appreciate all the gunk in the apron.  I’m still not sure if this is really old grease or old oil.  Either way, a bit of water made it in and caused some rust.  Most of the gears are loose at this point with the exception of the ones on the front (left side).   On the back half (right side of the pic) you can see parts of the clutches (gears with depressions in the middle) the gear that engages the cross slide (middle right), feed gear (lower left) and the half nut cam (bottom).  There are needle bearings or plain bearings under all the gears on both sides.  A lot of the roller needle bearings were suspect and replaced.Over on the front half of the apron there are the other halves of the clutches, a pinion gear, and the spring pin.  You can’t really tell in this pictures but the spring pin is about an inch long.  Half of it is about 1/4″ in diameter and the other half is about 1/8″ in diameter.  This will matter later on.  The pin fits into the bar with a spring between them and pushes the bar towards the half nut cam.  This acts as an interlock to keep you from engaging the longitudinal feed when the half nuts are engaged and vice versa.

The pinion gear exits the back of the apron and, though it has an oil seal, bits of metal made it in which chewed up the surface the bearing runs on.  The bearing needles are very hard and the shaft is not.  The shaft should be 0.75″ but was undersized in the worn area by 0.006″ allowing it to wobble.   I thought for a bit about how to fix it and decided on sleeving it with some 1144 steel.  There is also a taper pin which runs through the area that helps retain the small gear on end.  This is not the best spot for a pin in my opinion but thats how it is.  The first step was to turn it down to clear up the worn area.  I reduced the diameter to 0.7″ in preparation for the sleeve.I made the bushing to have a slight interference fit and pressed it on.  From there it’s back to the lathe to turn it back down to 0.75″.The best finish I can get is with a vertical shearing tool.  It did a good job and left a nice uniform surface.  Ideally, grinding the shaft would be the best choice but I think this should work for me.  Its certainly better that what I started with.  Next, it was over to the mill to drill the hole for the taper pin through the sleeve.  I pressed the small gear back in, made a new pin, installed it, removed the pin to shorten it several times, and got it to size.  It would have been better to install the pin before turning the diameter down so it could be trimmed to size easily.  A lesson for next time.

As before, all the parts got a bath in the parts cleaner and scrubbed.  I pressed all of the needle bearings out except for the cup needle bearing in the top of the pic below.  It was 10x the cost of the other bearings and looked to still be in good condition.  Here’s all the replacement bearings and an oil seal for the apron and carriage.    Most were needle bearings but two were sealed ball bearings.  The single oil seal is the one mentioned above for the pinion gear.

The arbor press made quick work of installing the bearings for the apron.  Here are the apron halves ready to be resembled.

All of the bearings were liberally oiled with ATF as it is the factory recommended lubricant and the parts and pieces put back into place.  You probably don’t notice it, I didn’t, but the bar that the spring pin goes into isn’t pushed over like it should be.  I accidentally flipped the pin over and the smaller half of the pin went inside the spring.

I applied some RTV onto one of the halves and put the apron back together.  I manually engaged the clutches and they operate as expected. 

Up in the carriage was another bearing and oil seal.  They were for the cross slide lead screw.  This bearing was also bad and the oil seal was very hard.  Both needed replacing.  I searched and searched but couldn’t find the appropriate replacement oil seal.  I decided to put an O-ring behind the bearing to act as a seal.  Behind the O-ring, I put a plastic bushing to keep the O-ring in place.  The oil will have to travel quite a bit to make it up here and I’m hopeful my makeshift seal will be adequate.       

Finally, I could put the apron and carriage back on the lathe.  Yay!  From here I started to reinstall the clutch towers.  As I was checking out the longitudinal one, I noticed the interlock wasn’t working.  Uh oh! Soon after I figured out why and had to remove the apron, crack it back open, flip the pin, and put it back together.  Oh well, better than not having the interlock.


Posted in Restoration, Tools | Tagged , | Leave a comment

Hardinge HLV Part 1

I’ve finally started to clean up my Hardinge HLV that, until now, has just been taking up space.  It’s a UK made version that I think was made in the 1950s.  It runs off of 400/440 3-phase 50 Hz just like my Fritz Werner mill.  The same power system for my mill will also work for powering the Hardinge.  I didn’t take a picture of the lathe before I started working on it but did have one from when I first stuffed it in my garage.  It hasn’t changed much since then.

The carriage and cross side were raw steel and have rusted a bit from poor storage by the previous owner.  So, I’m going to remove it all and work on cleaning it up.

On the back right side of the carriage is a oil reservoir for the way oil.  I removed the pump to find a lovely tank of sludge.  The apron also has a reservoir and it looks slightly better.  More on that in a future post though.  Obviously, this will need cleaning up too.

I stated in on the cross slide and compound by removing them.  Luckily, once the gibs were loosened up they came off pretty easily.  They were still pretty well oiled from before and there wasn’t any rust in these areas to contend with.

This compound has a quick withdrawal feature to assist in threading which really upped the parts count for it.  It came apart pretty easily though but I did notice someone has been inside of it before from some mismatched screws.

Everything got a bath and scrub in the parts washers.  I left most of it to soak except for the dials because of the plastic on them.  I’m guessing it probably wouldn’t hurt the plastic but I don’t want to take chances.  Some non-critical surfaces were cleaned up with the wire wheel but most of the parts were scrubbed with plastic brushes and 0000 steel wool.  While reassembling the quick withdrawal parts I found that it didn’t go together as easily as I would have though.  Taking a closer look I found a piece of something inside one of the parts.   It looks like a flake of metal that somehow made it inside.  It was stuck pretty good though and I couldn’t remove it with a pick.

So, it was over to the Hendey to clean it up.  I centered the part and took a few skimming passes until the flake had been removed.  It was a bit of work given the simple problem but paid off.  The parts now fit well and turned smoothly. After that, I was finally able to put the compound back together.  I noticed there were a few unfilled holes and, by comparing my compound to pictures of the same compound online, I found out I was missing a few pieces.  I’m missing a setscrew and jam nut which helps align a small brass piece inside the compound.  It looks like a copy of the setscrew I have will work fine and I’ve already picked up some set screws to modify.  The other part I’m missing is a short handle which is used to engage and disengage the quick withdrawal.  Both of these parts should be pretty easily to make.

I also cleaned up the tail stock.  It was very stiff and didn’t move well.  After removing the handle and screw, I was able to get it unstuck using a lot of oil and a plastic hammer.   Once I freed it up the tube still wouldn’t come out because of the nut inside.  To remove the tube you should push it all the way in and rotate it CCW (from the handle side).  This should allow the nut to come out but I wasn’t that lucky.

After messing with it for a while I realized that the nut had been split.  This expanded it just enough to hangup and not come out.  This is unfortunate and will require a new nut.  To remove it, I had to drill the nut out until it was thin enough to break allowing its removal.

With it apart everything got the soak and scrub routine again before being reassembled.  The tail stock was missing a woodruff key, washer, and nut for the handle.

That’s all for now.  Next time I’ll delve into the apron.

Posted in Restoration, Tools | Tagged , | Leave a comment

B&D 3/8″ Impact

I found an old 3/8″ Black & Decker pneumatic impact for $5 and decided to pick it up.  Its pretty old and, sure enough, when I looked it up online there’s practically no record of its existence. I brought it home, hooked it up, and it works pretty well.  There are a few issues though.  The first is that the retaining ball has gone missing and it won’t hold a socket on.  The second issue is that it is very dirty with lots of old grease packed into the tight spots.  Time to fix it.  Here’s what I started off with.

I started by removing the air inlet piece.  There’s a filter in this piece that was pretty well clogged.  Once the threaded part was removed a couple plastic air diverter pieces came out.

Removing the four screws on the front nose allowed the hammer and anvil to be removed.  This gives me access to the rotor assembly.

The rotor assembly has a slight interference fit with the body of the gun.  I found the easiest way to remove it is to hold the body by the handle and strike the front face of the body with a plastic faced hammer.  Similar to seating an axe head, the rotor housing doesn’t move as much as the body and slowly comes out.

Once I removed the rotor housing, I started to disassemble it.  I flipped it over and ran into a humorous bit.  The rotor is held in the bearing by a pan head Phillips screw.  Obviously, it works but its funny to run into a cheap screw here.

Anyways, getting the rotor out was the hardest part.  After that it comes apart pretty easily.  I did run into a couple brittle gaskets.  It’s a good idea to put the vanes back in the rotor in the way they came out from what I’ve read online.  I don’t know that it matters and mine fell out accidentally anyways.

I recently replaced the pump in my cheap parts washer and used it to clean everything.  It’s nice to be able to throw everything in there for a little bit and then wash them off later.  Everything was scrubbed, cleaned, dried, and oiled before reassembly.  The bearings also go fresh grease.

I noted before that I had some gaskets that needed replacing.  Parts aren’t available for it and if they were might not be worth it.  So, I grabbed some gasket paper and proceeded to make some replacement gaskets.

To fix the retainer ball, I fished around through some old ratchet parts kits I had and found some pieces that would fit.   The ball is the correct diameter and I slowly trimmed a spring down to a good size.

I pressed the ball in to the hole and found that it stayed in.  The ball works to retain a socket but is a little stiff.  So, it’s not a perfect fix but it’s functional.  Besides the square drive is pretty worn and lets the socket wobble around a lot.

I tried it out and found that it broke a nut loose pretty easily that was torqued to 125 ft lb.  So, it has some strength to it.  I’ll try to use it next time I’m working on my vehicle to see how it does. It’s be nice to have an impact thats smaller and lighter than my 1/2″ one.  If I find it to be great I may have to purchase a new 3/8″ impact.


Posted in Restoration, Tools | Leave a comment

Truck Battery Cable

I had some starting issues with my truck recently.  After looking into it some I discovered that my battery cables weren’t in good shape.  My truck has a dual batteries and it seems the corrosion was so bad that one battery wasn’t contributing when starting.  I decided to make my own battery cable as opposed to buying one.  I believe the setup I used will result in a better cable than the stock one or replacement available.

Here’s the old cable off the truck.  Starting at the bottom black cover is the terminal for the driver’s side battery.  Next, is the terminal for the passenger’s side battery and the feed wire from the post on the solenoid which carries current from the alternator.  Continuing along the wire, there’s a bracket and then the end which connects to the starter.

Here’s a close up on one of the terminals.  As you can see, the insulation has become brittle with age and heat which has started to crack.  The wire has also grown fat in spots due to internal corrosion.  Also, the terminal is a little worse for wear.

Here’s a better look at the corrosion.  In the pic below, the red wire is brand new and the middle wire is an old wire that’s still in good shape.   On the left is a wire full of corrosion which causes the internal resistance of the wire to go up decreasing the current through it.

To start with I needed some new red 2/0 gauge wire for the positive.  I chose to go with welding lead wire which is more flexible and has a more durable insulation.  The negative wire on the truck looked good except near to the terminals.  Fortunately, there was enough slack on the negative cables to allow me to trim the bad sections off and reuse them.

For terminals I decided to go with so called “military style” terminals.  I like these terminals because the cables are attached via bolts allowing replacement of pieces if necessary.   I also ordered some lugs to attach to the wire to connect the pieces (not pictured).

The lugs I purchased need to be crimped on and to do that I picked up a cheap hydraulic crimper from Amazon.  You can tell it’s a cheap model but it worked well.  The crimper has different dies that can be used for different gauge wires which make it pretty versatile and useful for other projects.  You can solder on lugs as well but I think a good crimp gives a better connection.

I took measurements off the old cable and cut my new wire in to segments a little longer.  Next, I slipped on a piece of adhesive heat shrink tubing and removed the insulation from the end of the wire for the lug.

Then comes the fun part…crimping the lug.  You almost need three hands to do this part.  I found it easier to lightly squeeze the lug with the crimper and then insert the wire for the crimp.  Once you’re absolutely certain the wire is where you want it, start pumping.  After multiple pumps the lug and the wire have become one.  Then, for this lug, you move a bit down, and crimp it again.  Yup, that’s never coming off.  In retrospect, I may have overcrimped a bit but seems to have worked ok.

After crimping, I dabbed a little dielectric grease around the exposed wire and then sealed it with the heat shrink tubing.  This heat shrink tubing has an adhesive inside of it that oozes out around the ends to hopefully make a more durable seal.

After that was more crimping until finally I had two large cables and a small cable with lugs on the ends.  The lug for the starter has a 90 degree like the original cable.  The original cable had a rubber elbow molded onto it where it was held by a bracket.  To replace the elbow I used a piece of 3/4″ heater hose.  Later on, plastic wire looms were put on the cable similar to the stock one.

I crimped lugs on to the negative battery cables using the same process for the positive cables.  Now it’s time to install.  I attached all the terminals and put the cables into position.  After that all the wires were attached to the terminals.  In these pics I’m using the hardware that came with the terminals but soon after I switched over to nylock nuts to keep the nuts from loosening.

Above is the drives side battery and below is the passenger side battery.

I’d pulled the old starter off while I waited for all the supplies for the battery cable to arrive.  It looked worn and I decided to take a peak inside to check the condition.  One of the bearings was very stiff and one of the brush leads was partially broken.  There was also bit of scoring on the commutator and toasty electrical smell.  All this lead me to purchase a rebuilt one from the store.

With the new battery cable and starter in place the truck turns over and starts much quicker.  Startlingly so.  Clearly, things are working better.


I little bit afterwards, I ran across these battery terminal covers and picked them up.  I also converted the terminal nuts over to nylock nuts.  I had to trim the opening on the passenger’s side cover a bit to get all the wires to fit.

Should be good for a few more miles down the road!


Posted in Repair | Tagged , , | 5 Comments

Starrett Level Clean-Up

I found a Starrett level in an antique store the other day.  All of the vials were intact but the paint was starting to come off in spots.  I decided to take it apart to fix the paint….and break it.

The vials in this level are held in place by Plaster of Paris from what others have said on line.  This makes sense as it hardens quickly but not so quick that you can’t adjust the vials to read correctly.

I soaked the level in water to soften the Plaster of Paris and was able to pick bits of it out with some dental tools.

The big vial on top came out pretty easily as it was the most accessible.  The two smaller vials had plaster on top and bottom of them.  I removed the plaster on top of them and then gently turned them back and forth to remove them figuring the plaster on bottom had softened.  Unknown to me at the time, I also broke the small viles open.  It turns out that the fragile end that was pinched together to seal the vial was on the bottom and I broke the tip of it off.  Yay.  I didn’t realize this until later when I looked at one of the small vials and thought “Hmm, it used to have a smaller bubble.”  In the pic below you can see the broken tips.

Oblivious to what I’d done, I worked on removing the paint with some spray on Jesco paint remover.  It’s fast and effective. 

Here’s what I ended up with after stripping the paint.  Most of it is gone.

I taped the ground edges off and painted it. 

Once the paint was dry, I moved on to reinstalling the vials.  I needed a level surface to set the level on to set the vials.  To do this, I pulled out my small granite block and machinist level which is more sensitive than the one I’m working on.  I grabbed three bolts and nuts to use as adjusting feet for the block by putting a nut on each bolt.   Then I laid them out in a triangle and set the block on them.  The feet were adjusted until the block was level in both directions.

I installed the top vial pretty easily and was able to get it to read accurately.  I ended up using some drywall hole patch in a squeeze tube which made it easy to apply.

About this time I had my “Ah ha” moment when I realized I’d broken the two smaller vials.  I looked around online but couldn’t find any replacement vials that were the same size.  I’m sure Starrett would sell me some but the vials would probably cost more than the level.  I started to think about how I could fix the vials.  Some searching around online said than light petroleum spirits are usually used to fill vials.  Mineral Spirits would work then.  That left me with a couple more problems: how to fill it and how to seal it.

At the factory it appears they sealed the ends by pinching the glass.  I can see myself screwing that up and decided try to find an adhesive to seal it.  The substance would have to be impervious to mineral spirits.  A little searching lead me to JB Weld.  I tried that out and ran into another problem.  As the JB Weld was drying a little hole would appear in it.  It seems that the mineral spirits were evaporating and pushing through the JB Weld.  I knew the mineral spirits would evaporate, I just figured the JB Weld would be thick enough to not let it through.  Lesson learned.  Now I need something impervious to mineral spirits that sets up really quick.  I settled on 1 minute epoxy…which according to the instructions takes 5 minutes to harden.  Why?  I don’t know.  Anyways, epoxy seems to have done the trick and sealed the vials.  I’d place a drop on the end and then move it around slightly if I thought I saw a hole.  Shortly, it had hardened enough not to be a problem.

The other problem I had was how to fill the vials through the tiny holes in them.  Surface tension would keep the mineral spirits from flowing in.  So, I decided to suck it in instead.  I made a fancy vacuum chamber seen below.  Onto the hose I hooked one of those small hand vacuums and proceeded to pull enough air out to fill the vial.

Once the vial was full, I removed some of the mineral spirits by tapping the open end on some cardboard.  Each tap left a small drop and eventually I got the bubble to the appropriate size.  After that I quickly sealed the ends with epoxy.

The vials are slightly curved which means the hole they sit in allows the vial to move some.  I  put some drywall patch on the end of the vial inserted it and then squeezed more patch on top of the vial.  I used this sophisticated mechanism to hold the vial in place while the patch setup.

After that I reinstalled the smalls screws that cover the small vials and was done. 

Posted in Repair, Restoration, Tools | Tagged , , | 3 Comments

Automotive Tool Tray

I ran across a portable automotive tool tray while looking around online.  What is it you ask?  It’s an adjustable height, rolling, tray that is used to put mechanic’s tools on while working on a vehicle.  I thought one would be nice because I have a tendency to place tools around the engine bay while working.  Later on I have to gather them all up which can lead to a small mystery if I’ve missed one.  I read some reviews on it and there were some bad ones.  Some reviews said that it was flimsy and the welds were poor.  I said to myself, “I can do better.  I can made a sturdy tool tray with bad welds!”  And I did.

Since I was making the tool tray myself I wanted it to have a height range that accommodated both my car and truck.  Originally, I wanted to make the tray portion fold down but as I was designing it I found it wasn’t possible with the height range I needed.  Here’s a picture of what I made.  It adjusts between 34.5″ to 52.5″ and can be set at 3″ intervals between.


I started by working on the tray.  It’s constructed out of 1″ x 1/8″ thick angle and measures 21″ x 14.5″ which allowed me to get all of the pieces out of a 72″ long stick.  The 1″ height will allow me to put a board inside for the tools to rest on.  I mitered the corners and welded it together.  I recommend welding on the bottom of the tray so that the board will rest on the frame instead of rocking on the welds.  Alternatively, you can weld on the inside and grind them down.


Most of the rest of the moble tool tray is made out of 1″ square tubing that I got from Gill.  I used my overgrown hacksaw to cut it down to size.


The bottom of the mobile tool tray has the center section offset so that more of the tray overhangs the engine bay.  I didn’t want to to move it all the way to the edge so that I could put some bracing on it.  Here I’ve got the base of it clamped down and ready to weld.


After welding the base I started on the vertical piece that the top part slides in.  It’s made out of 1-1/4″ square tubing.  To position the top part I thought about using a pin but decided it would be easier to weld a nut to one side.  A through pin or bolt is preferable to using a bolt that would just press against the sliding tube as it greatly reduces the chance of the top sliding down under weight.


After finishing with the 1-1/4″ tubing it was back to the little welding table to attach it.  I welded it on and then braced it with additional scrap material.

tt6 tt7

To support the top I used another piece of 1″ square tubing that would slide inside of the 1-1/4″ piece.  I positioned the first hole at 6″ from one end and then drilled additional holes every 3″.

tt8The inside of the 1-1/4″ tubing was a larger than the outside of 1″ tubing.  To compensate for this, I welded a small plate on the bottom back side of the 1″ tubing.  This is the location that presses against the inside of the larger tubing and will keep the top assembly from rattling around.

tt8aWith that done, it was back to the tray to start welding  the bracing that would connect it to the vertical 1″ square tubing.  I cut the bracing a little shorter than the dimensions of the top and welded it into place.


Finally, I could put the pieces together and test it.  Here it is at the lowest height.


Now it is raise to the max height holding my jack to prove to myself that it won’t fall apart with some weight on it.  I’d planned to weld some casters to the tool tray but instead decided to use some stem casters.  It would have been easier to drill the holes for the stems before assembly but I was able to get them drilled with my drill press after this pic.


Next up was painting in my custom fresh air paint booth.  I sanded it all with a flap disk and put on a coat of primer from a spray can.  After the primer had dried, I put on a top coat and watched the bugs jump into the paint.  Yay…I guess they like red.


I mentioned above about welding a nut on for a bolt to keep the top half of the tool tray in place. While I was waiting for the paint to dry I turned a piece to use instead of a bolt.  Other than my knurling not being deep enough it works as expected.


Once the paint had dried a couple days, I installed the casters and put it back together.


I grabbed a scrap piece of 1/2″ plywood to use as my work surface.  It is held in there by its own weight and can be replaced in the future if needed.


If you’d like to make a copy of the mobile tool tray, here’s a small drawing that lists the basic dimensions.  I don’t have any of the sheet metal bracing or lower 1-1/4″ tube support pictured here but their size isn’t critical.  You can use whatever size suits you.


Posted in Metalworking, Projects | Tagged , , , | Leave a comment